ガンマ線輸送計算の課題と計算法

NPO法人放射線線量解析ネットワーク

清水彰直

- 1. ガンマ線輸送計算の課題
- 1) 深層透過-大きな減衰

無限均質媒質、点等方線源 $4\pi x^2 \phi(x) = B(x) \exp(-\Sigma(E_0)x)$

x(mfp)	$\exp(-\Sigma(E_0)x)$	B(x)	$4\pi x^2 \phi(x)$	核種	E_0
40	4.3E-18	6.7E+06	2.9E-12	Be	80keV
		1.0	4.3E-18	Pb	30keV
100	3.7E-33	2.5E+09	9.3E-24	Be	80keV
		1.0	3.7E-33	Pb	30keV

減衰が非常に大きい:実験は困難、モンテカルロ計算は大変

距離 40 Mean Free Path

単位 cm

入射エネルギー	水	コンクリート	鉄	鉛
0.01 MeV	8.0	0.63	0.30	0.028
0.1 MeV	238	98	14.9	0.67
1 MeV	566	262	85	51.1
10 MeV	1,802	722	171	73.5

2) 散乱の異方性(エネルギー角度相関による) 散乱微分断面積 $\Sigma_s(E_0, \omega_0 \to E, \omega)$ 自群散乱断面積 $\Sigma_{n,n}(\omega_0 \to \omega) = \int_n dE \int_n dE_0 \Sigma_s(E_0, \omega_0 \to E, \omega) / \Delta E_n$

コンプトン散乱のエネルギー角度相関
$$\lambda - \lambda_0 = 1 - \cos \theta$$

 $\lambda = 0.5110 / E(MeV)$ (単位:コンプトン波長)
 θ :散乱角

例 エネルギー群 11 MeV-9 MeV
$$\lambda_0 = 0.04645$$
 $\lambda = 0.05678$ $\lambda - \lambda_0 = 0.0103$
 $1.0 \le \cos \theta \le 1.0 - 0.0103$

自群散乱断面積
$$\Sigma_{n,n}(\omega_0 \rightarrow \omega)$$
 $\omega_0 = 0.5$

コンプトン散乱の二重微分断面積の解析表示

$$\sigma(\lambda_0, \omega_0 \to \lambda, \omega) = K(\lambda, \lambda_0) \operatorname{Re} alPartof \frac{1}{\pi \sqrt{(1 - \omega_0^2 - \omega^2 - \gamma^2 + 2\gamma \omega \omega_0)}}$$

$$\gamma = 1 + \lambda_0 - \lambda$$

ルジャンドル関数による展開は計算上無理(収斂が悪い)

$$\sigma(\lambda_0, \omega_0 \to \lambda, \omega) = \frac{1}{2} K(\lambda, \lambda_0) \sum_{l=0}^{\infty} (2l+1) P_l(\gamma) P_l(\omega) P_l(\omega_0)$$

同様にガンマ線束の展開 $\phi(x, E, \omega) = \sum_{l=0}^{\infty} \frac{4\pi}{(2l+1)} \phi_l(x, E) P_l(\omega)$ も計算上無理

<u>エネルギー群幅<<散乱による最大エネルギー変化幅</u>の時に起きる

0.01 2.0 (コンプトン波長)

3) 空間メッシュ幅

ボルツマン輸送方程式 一次元平板体系 多群近似

$$\omega \frac{d}{dx} \phi_n(x, \omega) + \Sigma_n \phi_n(x, \omega) - \int_{-1}^1 d\omega' \Sigma_{n, n}(\omega' \to \omega) \phi(x, \omega') = S_n(x, \omega)$$

自群散乱が小さい ($\Sigma_{n,n} \ll \Sigma_n$)時は、同次方程式 ($S_n = 0$)の近似解は $\phi_n(x,\omega) \approx \exp(-\Sigma_n x / \omega)$

数値計算に必要なメッシュ幅は $h \le \omega / \Sigma_n = \omega \Sigma_1 / \Sigma_n$ mfp

ω の最小値=0.006 15角度分点(S₃₀相当)

物質は鉛、第1群は10 MeV とすると

第n群 0.5 MeV の時 $h \le 0.006 \times 0.54/1.75 = 1/540$ mfp

第n群 50 keV の時 $h \le 0.006 \times 0.54/82.0 = 1/25,300$ mfp

- 2. ガンマ線輸送計算法 (Deterministic Method)
- 1) モーメント法 Moments Method

L. V. Spencer and U. Fano, Phys. Rev. 81, 464L (1951)

R. Goldstein and J.E. Wilkins, NYO-3075 (1954)

ANSI/ANS-6.4.3 ANS Be-Cuの15 核種のBuildup Factor NBS で計算

空間モーメントの定義

1.40 **→**15MeV 1.35 **—**■— 10MeV 1.30 –<mark>–</mark>▲–8MeV 1.25 **────** 5MeV 1.20 —●— 4MeV —— 3MeV 1.15 —— 2MeV 1.10 ––– 1.5MeV BE(ANS)/BF(E) BE — → 1 MeV —**□**— 0.8MeV ____0.6MeV -×−0.5MeV _ж_0.4MeV 0.90 —+—0.2MeV 0.85 ----0.15MeV 0.80 ----0.10MeV 0.75 —**□**— 0.06MeV 0.70 ____0.05MeV —× 0.04MeV 0.65 0.60 ____0.02MeV 0 5 10 15 20 25 30 35 40 -+-0.015MeV Depth (mfp)

Exposre Buildup Factor Ratio ANS/IE Fe

Table 2Comparison of exposure buildup factor in ANS data to that calculated by IE method

	Energy		$\bigcirc \cdot n$	mor	e thai	1 5%	Ο.	6~1	0%	$\wedge \cdot m$	ore th	nan 1()%			2		-		-	-
	(MeV)	R o		<u> </u>	N	0	<u> </u>	Ma	<u> </u>	<u> </u>		<u>e</u>	<u>۲/0</u>	ĸ	Fo	<u> </u>					
-	15.0		<u>Б</u>	<u> </u>		<u> </u>				$\overline{)}$		<u> </u>		<u></u>		<u> </u>					
	10.0	0	ő	ő	0	0	0	0		Ő	õ	0	Ő	Ő	Ő	Ő	0	ő	Ő		
	0.0	0	Ő	Ő	0	0	0	0	0	0	0	0	Ő	0	Ő	Ő	0	Ő	Ő		
	6.0					0	Ő	Ő		0		0	0		Ő	0		0	0		
	5.0	0	0	0	0	0	õ		Ő	~	ő	0	0	Ő	õ	Ő	0	Ő	Ő		
	4.0	0	0	0	0	0	0	0	0	0	õ	Ā	0	0	0	0	0	õ	Ő		
	3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0		
	2.0	Ô	ŏ	Õ	Ň	õ	Ő	Õ	Ô	Ô	Ő	Ő	Ô	Ô	õ	Ô	Ő	Ő	0		
	1.5	õ	õ	õ	0	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ		
	1.0	Ô	õ	Õ	Ô	Ô	Õ	Õ	Ô	Ô	Õ	Õ	Ô	Ô	Ô	Ô	Ô	Ô	Ô		
	0.8	Õ	Õ	Õ	õ	Õ	õ	Õ	Õ	Õ	õ	õ	Õ	Õ	Õ	Õ	õ	õ	õ		
	0.6	ŏ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ		
	0.5	Õ	$\tilde{\Delta}$	Õ	Õ	Õ	Õ	õ	õ	õ	Õ	Õ	õ	Õ	õ	õ	Õ	Õ	õ		
	0.4	O	Δ	O	O	0	O	O	O	O	O	O	O	O	O	O	O	O	O		
	0.3	0	O	O	O	0	O	O	O	O	O	O	Ô	O	Ô	O	O	O	0		
	0.2	0	O	O	Ô	0	Ô	Ô	O	O	O	Ô	O	O	O	O	Δ	Ô	O		
	0.15	0	Δ	O	Ô	O	Ô	Ô	Ô	Ô	Ô	Ô	Ô	Ô	Ô	Ô	0	Ô	0		
	0.10	O	Δ	0	0	0	O	Ô	Ô	Ô	O	0	Ô	Ô	Ô	Ô	0	O	Ô		
	8 0.0	Ô	Δ	0	Ô	0	0	0	Δ	Ô	Δ	0	Ô	Ô	Ô	Ô	Ô	Ô	Ô		
	0.06	O	0	0	O	Ø	0	O	Δ	O	O	O	O	O	O	O	O	Δ	0		
	0.05	0	0	0	0	Ø	0	Δ	0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0		
	0.04	0	Ō	Ø	0	Ø	Ö	0	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	O		
	0.03	Ŏ	Δ	Δ	0	Ø	0	Ø	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Δ	0	Δ		
	0.02	Δ	Δ	Ö	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø		
-	0.015				0	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>0</u>	Total	Fraction (%)
	© ○	10	12	18	19	19	20	21	21	23	22	22	24	23	22	23	21	22	18	300	δ I 1 4
	0	2	0	0	5	0	5	2	2	1	2	2	1	2	3	2	2	2	0	62	14
	Δ	2	/			0	0	2	2				0	0	0	0	2			2.2	5

without bremsstrahlung based on cross section NBS29

Source Difference of exposure buildup factor in ANS data²⁾ from that calculated by IE method up to depths of 40 mfp \bigcirc :no more than 5% \bigcirc :6~10% \triangle :more than 10%

WAT : water, CRT : Concrete, AIR : air

BF誤差評価 B 100keV

モーメント法

特徴 :① 最初の<u>信頼できる</u>ガンマ線輸送計算法
散乱の異方性、空間メッシュの問題を克服
② 計算誤差評価がなされている。

短所 : ① 計算値が Suprious Oscillation を起こすことがる。 (モーメントからガンマ線束空間分布を構成する時の誤差)

- ② 無限均質媒質にしか適用できない
- ③ ガンマ線束角度分布が計算されていない。

2) 直接積分法 PALLAS

K. Takeuchi and S. Tanaka, JAERI-M9695 (1981)

但し、 K-edge の付近 約 30%の差

1.5MeV 以上 は制動輻射線の取り扱いによる差

鉛の Exposure Buildup Factor の比較

鉛の Exposure Buildup Factor の比較 線源エネルギー 0.1 MeV

直接積分法 PALLAS

特徴 ① 日本で開発された計算方法、国際的に貢献

散乱微分断面積の解析式使用、空間メッシュを柔軟に採れる

- ② 高エネルギーガンマ線の輸送計算では、Sn計算より信頼できる
- 一次元有限体系に適用可能
- 短所 ① 自群散乱が無視できない場合は適用できない
 - ② 自群散乱無視に起因する誤差が評価されていない
 - ③ 制動輻射線を含む正確な計算が実現できていない

(非常に小さい空間メッシュをとることは困難?)

課題 二次元、三次元に拡張可能か?

- 3) IE 法 Invariant Embedding Method
 - 1) V. A. Ambarzumian, S. Chadrasekar (1950): 天体における光の反射
 - 2) R. Bellmann (1956) 応用数学者, Invariant Embedding の命名
 - 3) A. Shimizu and H. Mizuta (1966) ガンマ線の反射、透過問題に適用 A. Shimizu and K. Aoki, Application of Invariant Embedding to Reactor

Physics, Academic Press (1972)

4) A.Shimizu (1991) IE 法を更に進展させ、角度固有値法を開発

5) A.Shimizu etal. (2002 - 2004) ガンマ線 Buildup Factor の計算

○ 関数の定義

<u>厚さ X の均質平板</u>

反射関数 $\mathbf{R}(X) = R(E, \omega | E_0, \omega_0; X)$ 透過関数 $\mathbf{T}(X) = T(E, \omega | E_0, \omega_0; X)$

隣に他の平板を置いても、透過関数、反射関数は変わらない

○ 半無限均質媒質の反射関数 $R(E,\omega|E_0,\omega_0;\infty)$ $\left[\frac{\Sigma(E)}{\omega} + \frac{\Sigma(E_0)}{\omega_0}\right] R(E,\omega|E_0,\omega_0) = \frac{1}{\omega_0} \Sigma_s(E_0,\omega_0 \to E,\omega)$ $+ \int_0^{E_0} dE' \int_0^1 \frac{d\omega}{\omega} \Sigma_s(E',\omega' \to E,\omega) R(E',\omega'|E,\omega;\infty)$ $+ \frac{1}{\omega_0} \int_0^{E_0} dE' \int_0^1 d\omega' R(E,\omega|E',\omega';\infty) \Sigma_s(E_0,\omega_0 \to E',\omega')$ $+ \int_0^{E_0} dE' \int_0^1 d\omega' R(E,\omega|E',\omega';\infty) \int_0^{E_0} dE'' \int_0^1 \frac{d\omega''}{\omega''} \Sigma_s(E'',\omega'' \to E',-\omega') R(E'',\omega''|E_0,\omega_0;\infty)$

半無限媒質の表面に微小厚さの層(同じ組成)を加えても<u>反射関数は不変</u> この方程式を、多群角度分点近似の基に解く:空間変数は無い 水のナンバーアルベド

線源エネルギー	線源角度余弦	MCNP4 計算值	IE法計算值	
(MeV)	ω_{0}	А	В	B/A
	1.0	0.2000±0.0020	0. 2866	0. 9883
1.0	0. 7576	0.3592±0.0021	0. 3545	0.9864
	0. 5546	0.4352±0.0022	0. 4267	0.9874
	0. 2424	0.5955±0.0022	0. 5020	0. 9941
	0. 0864	0.7004±0.0014	0. 7006	1.0003
	1.0	0.1687±0.0019	0. 1671	0. 9905
10.0	0. 7576	0.2216±0.0021	0. 2209	0. 9968
	0. 5540	0.2958±0.0023	0. 2924	0. 9946
	0. 2424	0.5287 ± 0.0027	0. 5250	0. 9930
	0.0846	0.7586 ± 0.0027	0. 7578	0. 9989

IE 法の計算 46群 15角度分点(S30相当)

- 〇 透過関数 $T(E, \omega | E_0, \omega_0; X)$ の計算:空間メッシュの問題あり
 - → 修正透過関数の導入 $\widetilde{T}(E, \omega | E_0, \omega_0; X)$ A. Shimizu (1966) $J_0(E_0, \omega_0)$ $J_t(E, \omega)$

 半無限媒質
 線源
 平板(厚さX)

○ 修正透過関数の方程式

$$\frac{d}{dX}\widetilde{T}(E,\omega|E_0,\omega_0;X) = -\frac{\Sigma(E)}{\omega}\widetilde{T}(E,\omega|E_0,\omega_0;X) + \int_0^{E_0} dE' \int_0^1 d\omega' C(E,\omega|E',\omega')\widetilde{T}(E',\omega'|E_0,\omega_0;X)$$

$$C(E, \omega | E_0, \omega_0) = \frac{1}{\omega_0} \Sigma_s(E_0, \omega_0 \to E, \omega)$$

+ $\frac{1}{\omega_0} \int_0^{E_0} dE' \int_0^1 d\omega' R(E, \omega | E', \omega'; \infty) \Sigma_s(E_0, \omega_0 \to E', -\omega')$

定数係数の1階常微分方程式

多群角度分点近似の基に、空間積分は解析的にできる。:角度固有値法 空間メッシュの問題を克服

汎関数関係

 $\widetilde{T}(E,\omega|E_0,\omega_0;X+X') = \int_0^{E_0} dE' \int_0^1 d\omega' \widetilde{T}(E,\omega|E',\omega';X') \widetilde{T}(E',\omega'|E_0,\omega_0;X)$

初期厚さに関して、Runge Kutta 法で解く

初期厚さ 1/512 mfp 低Z元素

1/32,768 mfp 高乙元素(制動輻射線を含む) 汎関数関係を使って、2倍の厚さの関数を逐次求める 空間メッシュの問題を克服,深い透過問題を処理できる

○ 輸送計算誤差評価

空間メッシュ幅の影響:解析解との比較 角度分点数の影響:約500ケースのサーベイ計算 エネルギー群数の影響:同上

正確な解が不明の時、どうして誤差を評価できるか。

① 空間メッシュ幅の影響

数値解と解析解との比較 水 線源エネルギー 1.0 MeV

	BF(数値解)/BF(解析解)⁵									
Depth/ Δ	1/32 mfp	1/64 mfp	1/128 mfp	1/256 mfp	1/512 mfp					
1.0 mfp	1.0944	1.0105	1.0011	1.0003	1.0003					
10.0	1.1920	1.0223	1.0018	1.0001	1.0000					
40.0	1.2057	1.0241	1.0019	1.0002	1.0001					
70.0	1.2074	1.0243	1.0019	1.0001	1.0000					
100.0	1.2081	1.0243	1.0019	1.0001	1.0000					

数値解:初期メッシュ幅∆で Runnge Kutta 法で解き、汎関数関係利用 数値解での空間メッシュによる誤差は、実際上 0 にできる。

① 角度分点数の影響

Ratio of buildup factors computed with different angular divisions Water in energy region B (source energy 1.0 MeV)

B(G,N;X) Buildup Factor 角度分点数G、エネルギー群数、距離Xmfp

誤差関数の定義

 $Ea(G,X) = B(G,N;X) / B(\infty,N;X)$

 $Ea(G,X) = \exp(f(w_G,X))$

 w_G 角度分点Gのメッシュ幅 $w_1 > w_2 > w_G > w_{G+1} > 0$ $w_{\infty} = 0$

 $B(H, N, X) / B(G, N, X) = \exp(f(w_H, X) - f(w_G, X)) = \exp(\int_{w_G}^{w_H} dwdf / dw)$ $Ea(G, X) = \exp(f(w_G, X)) = \exp(\int_0^{w_G} dwdf / dw)$

 $\overline{E}a(G,X) = \exp(w_G(\Delta f / \Delta w)_{w_G}) \quad \overline{E}a(G,X) < Ea(G,X) \quad (f \geq df / dw は負)$

 $\overline{E}_a(G,X) < B(G,N;X) / B(\infty,N;X) \rightarrow B(\infty,N,X) < B(G,N,X) / \overline{E}_a(G,X)$

Ratio of buildup factors calculated with different number of energy groups Water, energy region B (source energy 1.0 MeV)

 $B(G,\infty,X) > B(G,N,X) / \overline{E}e(N,X)$

上限:15 分点と 13 分点より算出、 下限:95 群と 75 群より算出

BF誤差評価 B 150keV

IE 法

- 特徴 ① 日本で開発された計算方法、ガンマ線への応用は日本独自
 - ② 空間メッシュの誤差は実質0、深い透過計算が容易
 - ③ 単一エネルギー、方向線源に対するガンマ線束 $\phi(E,\omega,x)$ が計算可
 - ④ 計算誤差が評価されている
 - ⑤ 平板多重層に適用可能
- 短所 ① 一次元平板体系、及び点等方線源-無限均質媒質にのみ適用実現
- 課題 ① ガンマ線の多重層問題に適用
 - ② 中性子輸送計算に適用
 - 二次元問題に拡張?

4) Sn法

ガンマ線 Buildup Factor の計算 A. Kitsos, etal (1994) 輸送計算誤差評価がなされていない。

二つの課題 ①散乱の異方性&②空間メッシュの問題 未解決

(Ray Effect, Negative Flux:計算方法の欠点) 高エネルギーガンマ線輸送計算等 エネルギー群幅<<散乱による最大エネルギー変化幅

の時の輸送計算は信頼できない。

長所:① 中性子の輸送計算では実績がある

② 2次元、3次元の輸送計算に拡張できる

3. 結語

- ソフトの重要性を認識せよ(軽水炉ではソフトは国産化されていない)
- 遮蔽設計計算と放射線線量解析とは異なる
 解析計算の目標 :より正確な解 & 誤差評価 & 適切な余裕
- 計算には誤差がある(物理的、数学的考察、近似式の活用)
- 継続は力なり!!